Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.640
Filtrar
1.
Clin Exp Immunol ; 215(1): 15-26, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-37556361

RESUMEN

The recruitment of T cells to tissues and their retention there are essential processes in the pathogenesis of many autoimmune and inflammatory diseases. The mechanisms regulating these processes have become better understood over the past three decades and are now recognized to involve temporally and spatially specific interactions between cell-adhesion molecules. These include integrins, which are heterodimeric molecules that mediate in-to-out and out-to-in signalling in T cells, other leukocytes, and most other cells of the body. Integrin signalling contributes to T-cell circulation through peripheral lymph nodes, immunological synapse stability and function, extravasation at the sites of inflammation, and T-cell retention at these sites. Greater understanding of the contribution of integrin signalling to the role of T cells in autoimmune and inflammatory diseases has focused much attention on the development of therapeutics that target T-cell integrins. This literature review describes the structure, activation, and function of integrins with respect to T cells, then discusses the use of integrin-targeting therapeutics in inflammatory bowel disease, multiple sclerosis, and psoriasis. Efficacy and safety data from clinical trials and post-marketing surveillance are presented for currently approved therapeutics, therapeutics that have been withdrawn from the market, and novel therapeutics currently in clinical trials. This literature review will inform the reader of the current means of targeting T-cell integrins in autoimmune and inflammatory diseases, as well as recent developments in the field.


Asunto(s)
Integrinas , Esclerosis Múltiple , Humanos , Integrinas/química , Integrinas/fisiología , Linfocitos T , Moléculas de Adhesión Celular , Inflamación
2.
J Clin Immunol ; 43(6): 1250-1258, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37014583

RESUMEN

BACKGROUND: Leukocyte and platelet integrin function defects are present in leukocyte adhesion deficiency type III (LAD-III) due to mutations in FERMT3. Additionally, osteoclast/osteoblast dysfunction develops in LAD-III. AIM: To discuss the distinguishing clinical, radiological, and laboratory features of LAD-III. METHODS: This study included the clinical, radiological, and laboratory characteristics of twelve LAD-III patients. RESULTS: The male/female ratio was 8/4. The parental consanguinity ratio was 100%. Half of the patients had a family history of patients with similar findings. The median age at presentation and diagnosis was 18 (1-60) days and 6 (1-20) months, respectively. The median leukocyte count on admission was 43,150 (30,900-75,700)/µL. The absolute eosinophil count was tested in 8/12 patients, and eosinophilia was found in 6/8 (75%). All patients had a history of sepsis. Other severe infections were pneumonia (66.6%), omphalitis (25%), osteomyelitis (16.6%), gingivitis/periodontitis (16%), chorioretinitis (8.3%), otitis media (8.3%), diarrhea (8.3%), and palpebral conjunctiva infection (8.3%). Four patients (33.3%) received hematopoietic stem cell transplantation (HSCT) from HLA-matched-related donors, and one deceased after HSCT. At initial presentation, 4 (33.3%) patients were diagnosed with other hematologic disorders, three patients (P5, P7, and P8) with juvenile myelomonocytic leukemia (JMML), and one (P2) with myelodysplastic syndrome (MDS). CONCLUSION: In LAD-III, leukocytosis, eosinophilia, and bone marrow findings may mimic pathologies such as JMML and MDS. In addition to non-purulent infection susceptibility, patients with LAD-III exhibit Glanzmann-type bleeding disorder. In LAD-III, absent integrin activation due to kindlin-3 deficiency disrupts osteoclast actin cytoskeleton organization. This results in defective bone resorption and osteopetrosis-like radiological changes. These are distinctive features compared to other LAD types.


Asunto(s)
Síndrome de Deficiencia de Adhesión del Leucocito , Osteopetrosis , Humanos , Masculino , Femenino , Osteopetrosis/diagnóstico , Osteopetrosis/genética , Síndrome de Deficiencia de Adhesión del Leucocito/diagnóstico , Síndrome de Deficiencia de Adhesión del Leucocito/genética , Integrinas/fisiología , Leucocitos/metabolismo , Leucocitos/patología
3.
JAMA ; 328(13): 1291-1292, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36170060

RESUMEN

This Viewpoint discusses the rapid advances in molecular cell biological approaches over the past 50 years and the many avenues for future advances that have been opened, including direct applications for therapeutic and regenerative medicine.


Asunto(s)
Distinciones y Premios , Biología Celular , Integrinas , Investigación Biomédica , Biología Celular/historia , Biología Celular/tendencias , Historia del Siglo XXI , Integrinas/fisiología , Estados Unidos
4.
N Engl J Med ; 387(16): 1519-1521, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36170474
5.
FASEB J ; 36(5): e22292, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35357039

RESUMEN

Complexes formed with α5-integrins and the voltage-gated potassium (K+ ) channel KCNB1 (Kv2.1), known as IKCs, transduce the electrical activity at the plasma membrane into biochemical events that impinge on cytoskeletal remodeling, cell differentiation, and migration. However, when cells are subject to stress of oxidative nature IKCs turn toxic and cause inflammation and death. Here, biochemical, pharmacological, and cell viability evidence demonstrates that in response to oxidative insults, IKCs activate an apoptotic Mitogen-activated protein kinase/extracellular signal-regulated kinase (Ras-MAPK) signaling pathway. Simultaneously, wild-type (WT) KCNB1 channels sequester protein kinase B (Akt) causing dephosphorylation of BCL2-associated agonist of cell death (BAD), a major sentinel of apoptosis progression. In contrast, IKCs formed with C73A KCNB1 variant that does not induce apoptosis (IKCC73A ), do not sequester Akt and thus are able to engage cell survival mechanisms. Taken together, these data suggest that apoptotic and survival forces co-exist in IKCs. Integrins send death signals through Ras-MAPK and KCNB1 channels simultaneously sabotage survival mechanisms. Thus, the combined action of integrins and KCNB1 channels advances life or death.


Asunto(s)
Integrinas , Proteínas Proto-Oncogénicas c-akt , Apoptosis/fisiología , Supervivencia Celular/fisiología , Integrinas/fisiología , Transducción de Señal/fisiología
6.
Front Immunol ; 12: 708908, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34421914

RESUMEN

PI3K signalling is required for activation, differentiation, and trafficking of T cells. PI3Kδ, the dominant PI3K isoform in T cells, has been extensively characterised using PI3Kδ mutant mouse models and PI3K inhibitors. Furthermore, characterisation of patients with Activated PI3K Delta Syndrome (APDS) and mouse models with hyperactive PI3Kδ have shed light on how increased PI3Kδ activity affects T cell functions. An important function of PI3Kδ is that it acts downstream of TCR stimulation to activate the major T cell integrin, LFA-1, which controls transendothelial migration of T cells as well as their interaction with antigen-presenting cells. PI3Kδ also suppresses the cell surface expression of CD62L and CCR7 which controls the migration of T cells across high endothelial venules in the lymph nodes and S1PR1 which controls lymph node egress. Therefore, PI3Kδ can control both entry and exit of T cells from lymph nodes as well as the recruitment to and retention of T cells within inflamed tissues. This review will focus on the regulation of adhesion receptors by PI3Kδ and how this contributes to T cell trafficking and localisation. These findings are relevant for our understanding of how PI3Kδ inhibitors may affect T cell redistribution and function.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/fisiología , Linfocitos T/fisiología , Animales , Adhesión Celular , Movimiento Celular , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Factores de Intercambio de Guanina Nucleótido/fisiología , Humanos , Sinapsis Inmunológicas/fisiología , Integrinas/fisiología , Antígeno-1 Asociado a Función de Linfocito/fisiología , Ratones , Enfermedades de Inmunodeficiencia Primaria/etiología , Transducción de Señal/fisiología , Quinasas Asociadas a rho/fisiología
7.
Cell Metab ; 33(7): 1322-1341.e13, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34019840

RESUMEN

Mitochondria control eukaryotic cell fate by producing the energy needed to support life and the signals required to execute programed cell death. The biochemical milieu is known to affect mitochondrial function and contribute to the dysfunctional mitochondrial phenotypes implicated in cancer and the morbidities of aging. However, the physical characteristics of the extracellular matrix are also altered in cancerous and aging tissues. Here, we demonstrate that cells sense the physical properties of the extracellular matrix and activate a mitochondrial stress response that adaptively tunes mitochondrial function via solute carrier family 9 member A1-dependent ion exchange and heat shock factor 1-dependent transcription. Overall, our data indicate that adhesion-mediated mechanosignaling may play an unappreciated role in the altered mitochondrial functions observed in aging and cancer.


Asunto(s)
Adhesión Celular/fisiología , Mecanotransducción Celular/fisiología , Dinámicas Mitocondriales/fisiología , Adulto , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Respiración de la Célula , Células Cultivadas , Matriz Extracelular/metabolismo , Femenino , Células HEK293 , Humanos , Hiperglucemia/metabolismo , Hiperglucemia/patología , Hiperglucemia/fisiopatología , Integrinas/fisiología , Intercambio Iónico , Ratones , Microscopía Confocal , Persona de Mediana Edad , Mitocondrias/metabolismo , Mitocondrias/fisiología , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología , Intercambiador 1 de Sodio-Hidrógeno/fisiología , Imagen de Lapso de Tiempo
8.
J Invest Dermatol ; 141(10): 2338-2343, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34023128

RESUMEN

Periostin, an extracellular matrix and matricellular protein, binds to several types of integrins that transduce its signals. Its function in allergic inflammation is the establishment of sustained chronic inflammation through an amplification of T helper type 2‒immune responses. In addition, recent studies have shown a significant role of periostin in itch sensation through direct integrin-mediated stimulation of nerve fibers and interaction with immune and nonimmune cells (e.g., macrophages, eosinophils, basophils, and keratinocytes). The objective of this review is to describe the role of periostin in itch induction in human and animal models and its expression in human pruritic conditions.


Asunto(s)
Moléculas de Adhesión Celular/fisiología , Prurito/etiología , Animales , Humanos , Integrinas/fisiología , Péptido Natriurético Encefálico/fisiología , Sensación , Canal Catiónico TRPA1/fisiología
9.
Biochemistry ; 60(21): 1722-1730, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34010565

RESUMEN

The fluorescent reporters commonly used to visualize proteins can perturb both protein structure and function. Recently, we found that 4-cyanotryptophan (4CN-Trp), a blue fluorescent amino acid, is suitable for one-photon imaging applications. Here, we demonstrate its utility in two-photon fluorescence microscopy by using it to image integrins on cell surfaces. Specifically, we used solid-phase peptide synthesis to generate CHAMP peptides labeled with 4-cyanoindole (4CNI) at their N-termini to image integrins on cell surfaces. CHAMP (computed helical anti-membrane protein) peptides spontaneously insert into membrane bilayers to target integrin transmembrane domains and cause integrin activation. We found that 4CNI labeling did not perturb the ability of CHAMP peptides to insert into membranes, bind to integrins, or cause integrin activation. We then used two-photon fluorescence microscopy to image 4CNI-containing integrins on the surface of platelets. Compared to a 4CNI-labeled scrambled peptide that uniformly decorated cell surfaces, 4CNI-labeled CHAMP peptides were present in discrete blue foci. To confirm that these foci represented CN peptide-containing integrins, we co-stained platelets with integrin-specific fluorescent monoclonal antibodies and found that CN peptide and antibody fluorescence coincided. Because 4CNI can readily be biosynthetically incorporated into proteins with little if any effect on protein structure and function, it provides a facile way to directly monitor protein behavior and protein-protein interactions in cellular environments. In addition, these results clearly demonstrate that the two-photon excitation cross section of 4CN-Trp is sufficiently large to make it a useful two-photon fluorescence reporter for biological applications.


Asunto(s)
Integrinas/metabolismo , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Triptófano/análogos & derivados , Aminoácidos/metabolismo , Plaquetas/metabolismo , Membrana Celular/metabolismo , Integrinas/fisiología , Péptidos/síntesis química , Péptidos/química , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Unión Proteica/fisiología , Dominios Proteicos/fisiología , Triptófano/síntesis química , Triptófano/química
10.
Circ Res ; 128(7): 887-907, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33793334

RESUMEN

Renin cells are essential for survival perfected throughout evolution to ensure normal development and defend the organism against a variety of homeostatic threats. During embryonic and early postnatal life, they are progenitors that participate in the morphogenesis of the renal arterial tree. In adult life, they are capable of regenerating injured glomeruli, control blood pressure, fluid-electrolyte balance, tissue perfusion, and in turn, the delivery of oxygen and nutrients to cells. Throughout life, renin cell descendants retain the plasticity or memory to regain the renin phenotype when homeostasis is threatened. To perform all of these functions and maintain well-being, renin cells must regulate their identity and fate. Here, we review the major mechanisms that control the differentiation and fate of renin cells, the chromatin events that control the memory of the renin phenotype, and the major pathways that determine their plasticity. We also examine how chronic stimulation of renin cells alters their fate leading to the development of a severe and concentric hypertrophy of the intrarenal arteries and arterioles. Lastly, we provide examples of additional changes in renin cell fate that contribute to equally severe kidney disorders.


Asunto(s)
Hipertensión/etiología , Riñón/citología , Renina/fisiología , Animales , Arteriolas/embriología , Presión Sanguínea/fisiología , Comunicación Celular , Diferenciación Celular , Plasticidad de la Célula , Cromatina/fisiología , Ensamble y Desensamble de Cromatina/fisiología , Conexinas/fisiología , Homeostasis , Humanos , Integrinas/fisiología , Aparato Yuxtaglomerular/citología , Riñón/irrigación sanguínea , Riñón/embriología , Glomérulos Renales/fisiología , Ratones , MicroARNs/fisiología , Fenotipo , Regeneración/fisiología , Arteria Renal , Renina/metabolismo , Sistema Renina-Angiotensina/fisiología , Células Madre/fisiología , Equilibrio Hidroelectrolítico
11.
Sci Signal ; 14(665)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436497

RESUMEN

The first reported receptor for SARS-CoV-2 on host cells was the angiotensin-converting enzyme 2 (ACE2). However, the viral spike protein also has an RGD motif, suggesting that cell surface integrins may be co-receptors. We examined the sequences of ACE2 and integrins with the Eukaryotic Linear Motif (ELM) resource and identified candidate short linear motifs (SLiMs) in their short, unstructured, cytosolic tails with potential roles in endocytosis, membrane dynamics, autophagy, cytoskeleton, and cell signaling. These SLiM candidates are highly conserved in vertebrates and may interact with the µ2 subunit of the endocytosis-associated AP2 adaptor complex, as well as with various protein domains (namely, I-BAR, LC3, PDZ, PTB, and SH2) found in human signaling and regulatory proteins. Several motifs overlap in the tail sequences, suggesting that they may act as molecular switches, such as in response to tyrosine phosphorylation status. Candidate LC3-interacting region (LIR) motifs are present in the tails of integrin ß3 and ACE2, suggesting that these proteins could directly recruit autophagy components. Our findings identify several molecular links and testable hypotheses that could uncover mechanisms of SARS-CoV-2 attachment, entry, and replication against which it may be possible to develop host-directed therapies that dampen viral infection and disease progression. Several of these SLiMs have now been validated to mediate the predicted peptide interactions.


Asunto(s)
COVID-19/virología , Interacciones Microbiota-Huesped/fisiología , SARS-CoV-2/fisiología , SARS-CoV-2/patogenicidad , Internalización del Virus , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/fisiología , Animales , COVID-19/terapia , Secuencia Conservada , Interacciones Microbiota-Huesped/genética , Humanos , Integrinas/química , Integrinas/genética , Integrinas/fisiología , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/fisiología , Modelos Biológicos , Modelos Moleculares , Oligopéptidos/química , Oligopéptidos/genética , Oligopéptidos/fisiología , Dominios y Motivos de Interacción de Proteínas/genética , Dominios y Motivos de Interacción de Proteínas/fisiología , Señales de Clasificación de Proteína/genética , Señales de Clasificación de Proteína/fisiología , Receptores Virales/química , Receptores Virales/genética , Receptores Virales/fisiología , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/fisiología
12.
Curr Stem Cell Res Ther ; 16(7): 848-857, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33413068

RESUMEN

Transmembrane integrin receptors represent a major component of cell-extracellular matrix (ECM) communications that mediate cellular biological activities, including proliferation and differentiation. Stem cells, especially mesenchymal stem cells (MSC), have rapidly emerged as promising therapies for various diseases. Dynamic links exist between extracellular and intracellular environments that profoundly influence the cellular activities via integrin receptors, such as cell morphology transformation and differentiation. Interpreting the roles of integrin receptors in the regulation of MSC differentiation may potentially lead to an amplified therapeutic effect. In this review, we summarize, for the first time, the potential mechanisms by which integrins promote MSC multilineage differentiation, including integrin downstream signaling cascades and the interactions between integrin and ion channels, the cytoskeleton, and nuclear mechanoresponses. Furthermore, we focus on the current state and future prospects of the application of integrins to promote cell differentiation.


Asunto(s)
Diferenciación Celular , Integrinas/fisiología , Células Madre Mesenquimatosas , Matriz Extracelular , Humanos , Células Madre Mesenquimatosas/citología , Transducción de Señal
13.
Physiol Rev ; 101(1): 319-352, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32584192

RESUMEN

The extracellular domain of plasma membrane integrin αvß3 contains a cell surface receptor for thyroid hormone analogues. The receptor is largely expressed and activated in tumor cells and rapidly dividing endothelial cells. The principal ligand for this receptor is l-thyroxine (T4), usually regarded only as a prohormone for 3,5,3'-triiodo-l-thyronine (T3), the hormone analogue that expresses thyroid hormone in the cell nucleus via nuclear receptors that are unrelated structurally to integrin αvß3. At the integrin receptor for thyroid hormone, T4 regulates cancer and endothelial cell division, tumor cell defense pathways (such as anti-apoptosis), and angiogenesis and supports metastasis, radioresistance, and chemoresistance. The molecular mechanisms involve signal transduction via mitogen-activated protein kinase and phosphatidylinositol 3-kinase, differential expression of multiple genes related to the listed cell processes, and regulation of activities of other cell surface proteins, such as vascular growth factor receptors. Tetraiodothyroacetic acid (tetrac) is derived from T4 and competes with binding of T4 to the integrin. In the absence of T4, tetrac and chemically modified tetrac also have anticancer effects that culminate in altered gene transcription. Tumor xenografts are arrested by unmodified and chemically modified tetrac. The receptor requires further characterization in terms of contributions to nonmalignant cells, such as platelets and phagocytes. The integrin αvß3 receptor for thyroid hormone offers a large panel of cellular actions that are relevant to cancer biology and that may be regulated by tetrac derivatives.


Asunto(s)
Integrinas/fisiología , Hormonas Tiroideas/fisiología , Animales , Humanos , Proteínas Quinasas Activadas por Mitógenos/fisiología , Receptores de Hormona Tiroidea/fisiología , Transducción de Señal , Tiroxina/fisiología , Triyodotironina
14.
Pediatr Res ; 89(7): 1619-1626, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33027803

RESUMEN

Integrins are heterodimeric transmembrane cell adhesion molecules made up of alpha (α) and beta (ß) subunits arranged in numerous dimeric pairings. These complexes have varying affinities to extracellular ligands. Integrins regulate cellular growth, proliferation, migration, signaling, and cytokine activation and release and thereby play important roles in cell proliferation and migration, apoptosis, tissue repair, as well as in all processes critical to inflammation, infection, and angiogenesis. This review presents current evidence from human and animal studies on integrin structure and molecular signaling, with particular emphasis on signal transduction in infants. We have included evidence from our own laboratory studies and from an extensive literature search in databases PubMed, EMBASE, Scopus, and the electronic archives of abstracts presented at the annual meetings of the Pediatric Academic Societies. To avoid bias in identification of existing studies, key words were short-listed prior to the actual search both from anecdotal experience and from PubMed's Medical Subject Heading (MeSH) thesaurus. IMPACT: Integrins are a family of ubiquitous αß heterodimeric receptors that interact with numerous ligands in physiology and disease. Integrins play a key role in cell proliferation, tissue repair, inflammation, infection, and angiogenesis. This review summarizes current evidence from human and animal studies on integrin structure and molecular signaling and promising role in diseases of inflammation, infection, and angiogenesis in infants. This review shows that integrin receptors and ligands are novel therapeutic targets of clinical interest and hold promise as novel therapeutic targets in the management of several neonatal diseases.


Asunto(s)
Inflamación/fisiopatología , Integrinas/fisiología , Neovascularización Patológica , Animales , Niño , Humanos , Recién Nacido , Recien Nacido Prematuro , Ligandos , Unión Proteica
15.
Mol Biol Cell ; 32(3): 260-273, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33296226

RESUMEN

Mutations in two different domains of the ubiquitously expressed TRIM32 protein give rise to two clinically separate diseases, one of which is Limb-girdle muscular dystrophy type 2H (LGMD2H). Uncovering the muscle-specific role of TRIM32 in LGMD2H pathogenesis has proven difficult, as neurogenic phenotypes, independent of LGMD2H pathology, are present in TRIM32 KO mice. We previously established a platform to study LGMD2H pathogenesis using Drosophila melanogaster as a model. Here we show that LGMD2H disease-causing mutations in the NHL domain are molecularly and structurally conserved between fly and human TRIM32. Furthermore, transgenic expression of a subset of myopathic alleles (R394H, D487N, and 520fs) induce myofibril abnormalities, altered nuclear morphology, and reduced TRIM32 protein levels, mimicking phenotypes in patients afflicted with LGMD2H. Intriguingly, we also report for the first time that the protein levels of ßPS integrin and sarcoglycan δ, both core components of costameres, are elevated in TRIM32 disease-causing alleles. Similarly, murine myoblasts overexpressing a catalytically inactive TRIM32 mutant aberrantly accumulate α- and ß-dystroglycan and α-sarcoglycan. We speculate that the stoichiometric loss of costamere components disrupts costamere complexes to promote muscle degeneration.


Asunto(s)
Proteínas de Drosophila/metabolismo , Distrofia Muscular de Cinturas/metabolismo , Sarcoglicanos/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Animales Modificados Genéticamente , Costameras/metabolismo , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Drosophila melanogaster , Humanos , Integrinas/metabolismo , Integrinas/fisiología , Músculo Esquelético/metabolismo , Distrofia Muscular de Cinturas/fisiopatología , Mutación , Miofibrillas/metabolismo , Neurogénesis , Fenotipo , Sarcoglicanos/fisiología , Factores de Transcripción/metabolismo , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/genética
16.
Cell Mol Gastroenterol Hepatol ; 11(4): 1227-1250.e1, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33316453

RESUMEN

BACKGROUND & AIMS: Aberrant lymphocyte homing could potentially link inflammatory processes in the intestine and the liver, as distinct hepatobiliary diseases frequently develop as extra-intestinal manifestations in inflammatory bowel disease. In this study, we examined the role of the gut-tropic leukocyte adhesion molecule ß7 integrin and its endothelial ligand mucosal addressin cell-adhesion molecule-1 (MAdCAM-1) in immune-mediated hepatitis in mice. METHODS: Wild-type (WT) mice, MAdCAM-1-deficient mice, ß7 integrin-deficient mice, RAG-2-deficient mice, RAG-2/MAdCAM-1 double-deficient mice, and RAG-2/ß7 integrin double-deficient mice were subjected to concanavalin A (ConA)-induced hepatitis. The degree of hepatitis was evaluated by histology, flow cytometry, and expression analysis of inflammatory mediators. The motility of lymphocytes in progressive liver damage was assessed by intravital laser scanning multiphoton microscopy. RESULTS: Ablation of MAdCAM-1 or ß7 integrin ameliorated ConA-induced hepatitis in mice. ß7 integrin-deficient lymphocytes caused less liver damage than WT lymphocytes in ConA-treated RAG-2-deficient mice. Moreover, WT lymphocytes caused less liver damage in ConA-treated RAG-2/ß7 integrin double-deficient mice than in similarly treated RAG-2-deficient mice, indicating that ß7 integrin expression contributes significantly to the liver damage mediated by innate immune cells. MAdCAM-1 expression was dependent on ß7 integrin expression on adaptive and innate immune cells. Most importantly, lymphocytes in ConA-treated MAdCAM-1-deficient mice displayed more motility and less adhesion in the liver sinusoids in vivo, than lymphocytes in similarly treated WT mice. CONCLUSIONS: These data suggest that ß7 integrin expression on lymphocytes and innate immune cells contributes to MAdCAM-1 upregulation and liver damage in acute immune-mediated hepatitis, most likely by facilitating lymphocyte/sinusoidal endothelial cell interactions.


Asunto(s)
Moléculas de Adhesión Celular/fisiología , Concanavalina A/toxicidad , Proteínas de Unión al ADN/fisiología , Endotelio Vascular/inmunología , Hepatitis/patología , Integrinas/fisiología , Linfocitos/inmunología , Mucoproteínas/fisiología , Animales , Hepatitis/etiología , Hepatitis/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitógenos/toxicidad
17.
Cell Biol Int ; 45(2): 358-367, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33079476

RESUMEN

The unusual dilatation of dermal capillaries and angiogenesis played important roles in psoriasis. Some genes and proteins of dermal mesenchymal stem cells (DMSCs) from psoriasis are abnormal and related to the function of endothelial cells (ECs). The present study was aimed to evaluate whether psoriatic DMSCs could affect adhesion and migration of ECs through neovascularization-related integrins in psoriasis. Human DMSCs, collected from psoriasis lesions and healthy skin, respectively, were cocultured with human umbilical vein endothelial cells (HUVECs). The expression levels of three integrins, that is, αvß3, αvß5, and α5ß1 in HUVECs were tested by quantitative real-time polymerase chain reaction and Western blot analysis. The adhesion and migration of HUVECs were detected by adhesion assay and migration assay. The results showed that in psoriasis group, the expression of αVß3 and α5ß1 of HUVECs markedly increased 2.50- and 3.71-fold in messenger RNA levels, and significantly increased 1.63- and 1.92-fold in protein levels, comparing to healthy control group (all p < .05). But ß5 was not significantly different between the two groups (p > .05). In addition, compared with control, psoriatic DMSCs promoted HUVECs adhesion by 1.62-fold and migration by 2.91-fold (all p < .05). In conclusion, psoriatic DMSCs impact HUVECs adhesion and migration by upregulating the expression of integrins αVß3 and α5ß1.


Asunto(s)
Integrinas/fisiología , Psoriasis , Piel , Adolescente , Adulto , Adhesión Celular , Niño , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Lactante , Masculino , Células Madre Mesenquimatosas , Neovascularización Patológica , Psoriasis/metabolismo , Psoriasis/patología , Piel/metabolismo , Piel/patología , Adulto Joven
18.
Biochem Biophys Res Commun ; 533(3): 519-525, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-32981677

RESUMEN

Acute aortic dissection (AAD) is a devastating disease with high mortality; however, the pathogenic mechanisms of AAD remain poorly understood. Our present study aimed to identify genes associated with AAD and explore the molecular function of candidate genes in the pathogenesis of AAD. We used a whole-genome transcriptional microarray to identify putative AAD genes using ascending aortic tissues from four patients with AAD and four healthy organ donors. The differentially expressed genes were further validated in eight patients with AAD and eight healthy organ donors. Functional assessments were conducted to analyze the effects of the identified AAD genes on the phenotype of aortic vascular smooth muscle cells (VSMCs). The whole-genome transcriptional microarray analysis found 129 dysregulated genes in the ascending aortic tissues of AAD (fold change≥2), which were mainly associated with the focal adhesion pathway and actin cytoskeleton regulation pathway. Among these genes, integrin α9 (ITGA9) was identified to be involved in both pathways and downregulated by 50% in AAD patients. The association of ITGA9 with AAD was confirmed by Western blotting analysis (P = 0.003). Functional studies showed that knocking down ITGA9 in VSMCs resulted in a decrease in contractile markers (SM22α and α-SMA) and an increase in synthetic markers (OPN and SMemb), suggesting that the VSMCs switched from a contractile to a synthetic phenotype. After overexpression of ITGA9 by a recombinant adenovirus vector in VSMCs, SM22α and α-SMA were upregulated, while SMemb was downregulated, indicating a phenotypic switch from the synthetic to contractile phenotype of VSMCs. In conclusion, our study identified ITGA9 as a novel AAD gene. This gene is downregulated in patients with AAD and is involved in the regulation of the phenotypic switch of VSMCs from a contractile to a synthetic phenotype.


Asunto(s)
Disección Aórtica/genética , Integrinas/fisiología , Músculo Liso Vascular/metabolismo , Enfermedad Aguda , Disección Aórtica/diagnóstico , Disección Aórtica/metabolismo , Animales , Células Cultivadas , Biología Computacional , Perfilación de la Expresión Génica , Humanos , Integrinas/genética , Integrinas/metabolismo , Masculino , Fenotipo , Ratas
19.
Cancer Control ; 27(3): 1073274820945980, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32762341

RESUMEN

Uniquely in nature, living systems must acquire, store, and act upon information. The survival and replicative fate of each normal cell in a multicellular organism is determined solely by information obtained from its surrounding tissue. In contrast, cancer cells as single-cell eukaryotes live in a disrupted, heterogeneous environment with opportunities and hazards. Thus, cancer cells, unlike normal somatic cells, must constantly obtain information from their environment to ensure survival and proliferation. In this study, we build upon a simple mathematical modeling framework developed to predict (1) how information promotes population persistence in a highly heterogeneous environment and (2) how disruption of information resulting from habitat fragmentation increases the probability of population extinction. Because (1) tumors grow in a highly heterogeneous microenvironment and (2) many cancer therapies fragment tumors into isolated, small cancer cell populations, we identify parallels between these 2 systems and develop ideas for cancer cure based on lessons gleaned from Anthropocene extinctions. In many Anthropocene extinctions, such as that of the North American heath hen (Tympanuchus cupido cupido), a large and widespread population was initially reduced and fragmented owing to overexploitation by humans (a "first strike"). After this, the small surviving populations are vulnerable to extinction from environmental or demographic stochastic disturbances (a "second strike"). Following this analogy, after a tumor is fragmented into small populations of isolated cancer cells by an initial therapy, additional treatment can be applied with the intent of extinction (cure). Disrupting a cancer cell's ability to acquire and use information in a heterogeneous environment may be an important tactic for causing extinction following an effective initial therapy. Thus, information, from the scale of cells within tumors to that of species within ecosystems, can be used to identify vulnerabilities to extinction and opportunities for novel treatment strategies.


Asunto(s)
Ecosistema , Neoplasias/terapia , Citoesqueleto/fisiología , Humanos , Integrinas/fisiología , Modelos Teóricos , Neoplasias/patología , Microambiente Tumoral
20.
Mol Biol Cell ; 31(16): 1714-1725, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32614644

RESUMEN

Epithelial tubules form critical structures in lung, kidney, and vascular tissues. However, the processes that control their morphogenesis and physiological expansion and contraction are not well understood. Here we examine the dynamic remodeling of epithelial tubes in vivo using a novel model system: the extracorporeal vasculature of Botryllus schlosseri, in which the disruption of the basement membrane triggers rapid, massive vascular retraction without loss of barrier function. We developed and implemented 3-D image analysis and virtual reconstruction tools to characterize the cellular morphology of the vascular wall in unmanipulated vessels and during retraction. In both control and regressed conditions, cells within the vascular wall were planar polarized, with an integrin- and curvature-dependent axial elongation of cells and a robust circumferential alignment of actin bundles. Surprisingly, we found no measurable differences in morphology between normal and retracting vessels under extracellular matrix (ECM) disruption. However, inhibition of integrin signaling through focal adhesion kinase inhibition caused disruption of cellular actin organization. Our results demonstrate that epithelial tubes can maintain tissue organization even during extreme remodeling events, but that the robust response to mechanical signals-such as the response to loss of vascular tension after ECM disruption-requires functional force sensing machinery via integrin signaling.


Asunto(s)
Células Epiteliales/metabolismo , Imagenología Tridimensional/métodos , Remodelación Vascular/fisiología , Actinas/metabolismo , Animales , Membrana Basal/metabolismo , Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Integrinas/fisiología , Fenómenos Mecánicos , Mecanotransducción Celular/fisiología , Morfogénesis , Transducción de Señal , Urocordados/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...